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Abstract
This study presents a hierarchical lane-keeping controller for active steering systems, accounting for two sensory delays. We develop a dynamics model of the vehicle to examine
the impact of these delays on system stability and control performance. Our approach includes upper-level feedback control for steering angle and lower-level steering torque control.
We derive optimal control gains for various delay scenarios and identify the optimal delay combination for these gains. The findings show that the system achieves the fastest decay
rate with the optimal control gains and delay combination, highlighting significant improvements in stability and performance.

Introduction
In the past twenty years, autonomous vehicle (AV) research has seen incredible progress.
One area that is crucial for making these vehicles safe and stable is active steering con-
trol, as highlighted by [1]. Even though control systems have made essential progress,
surprisingly little attention has been given to studying the effects of time delays within
them, despite the fact that time delays persist as a critical issue.
Signal congestion has emerged as a significant challenge for modern AV systems. Vari-

ations in sensor configurations and estimation methods at the upper controller levels
result in differences in feedback delays related to state variables in [2, 3]. These differ-
ences can potentially cause unforeseen effects on system behavior. Hence, conducting an
in-depth investigation into the effects of two time delays within upper-level controllers
is essential for developing robust and safe control for AV.

Vehicle dynamics modelling
]The lateral dynamics of vehicles are commonly studied using the well-known bicycle

model, which assumes a constant longitudinal speed Vx (see Fig. 1). This model is
widely used due to its simplicity and effectiveness in capturing vehicle behavior. Vy is
the lateral speed, ψ is the yaw angle, δ is the steering angle, Ω is yaw rate, ω is the
steering rate, XG and YG represent the longitudinal and lateral position, respectively.
In case of small tire deformations, the linearized brush tire model (see [4]) provides.

Figure 1: Representation of planar bicycle model and reference path.

] In case of the straight motion of the vehicle, the steady-state solution reads Vy ≡ 0,
Ω ≡ 0, ω ≡ 0, ψ ≡ 0, δ ≡ 0, XG = Vxt, and YG ≡ 0. After linearizing the equations
of motion considering the control laws. Thus, the state vectors x of the linearized
closed-loop system can be defined as x =

[
YG ψ δ ẎG Ω ω

]T
.

Hierarchical linear state feedback controller
] In this study, we consider that the desired path of the vehicle is the X-axis. Namely,

the lateral error of the vehicle is the position YG of the vehicle’s center of gravity, while
the angle error is equal to the yaw angle ψ. To accomplish the vehicle path-following,
a hierarchical steering control strategy is constructed.

]An upper-layer control law for calculating the desired steering angle δd is designed to
accommodate variations in feedback delays for lateral position error and yaw angle
error. The control law is based on a linear state feedback:

δd(t) = −PyYG(t− τy)− Pψψ(t− τψ) , (1)
where Py and Pψ are the feedback control gains. The time delays corresponding to
the different signals are τy and τψ.

] In order to achieve the desired steering angle, the steering torque Ms is generated by
a lower-level PD controller:

Ms = −kp(δ − δd)− kdω , (2)
where kp and kd are the lower-level feedback gains.

The effects time delays on the linear stability
By means of the semi-discretization method[5], stability charts are constructed in the
plane (Py, Pψ) of the higher level control gains while all the other parameters of the
system are fixed. The control gain setup, for which the system has the most stable

configuration (i.e., the largest absolute value of the characteristic multipliers of the
semi-discretized system is minimal), can also be determined. This setup varies as the
parameters of the system are changed, in the same way as with the variation of the time
delays.
This is shown in Fig. 2, where the colorbar refers to the magnitude of the largest mul-

tiplier and time delays vary in a wide range. As it can be seen, there is an optimal time
delay combination (τy = 0.27 s and τψ = 0.01 s), where vibrations have fastest decay
rate. In contrary to our physical sense, there are situations when increased delay may
improve the stability of the vehicle system. For example, in case of having τy = 0.27 s,
using the increased delay τψ = 0.479 s results a better performance than in the case
when we use τψ = 0.114 s. The numerical simulations are shown in Fig. 3. Panel (a)
shows the time series of the lateral position,and panel (b) shows the yaw angle over time.

Figure 2: The characteristic multipliers related to the optimal gains for different combinations of
time delays, A: τy = 0.27 s and τψ = 0.114 s, B: τy = 0.479 s and τψ = 0.114 s

Figure 3: Simulations for different time delay combinations.

Conclusion
In summary, the analysis identifies the control gain setup that yields the most sta-
ble configuration, which varies with changes in system parameters, including time de-
lays. Surprisingly, optimal combinations of time delays are found to enhance stability,
with specific examples demonstrating improved performance even with increased delays.
These findings challenge the conventional wisdom that time delays tend to destabilize
dynamical systems: certain scenarios may benefit from larger time delays and these
scenarios are also relevant in practical applications like the control of AV.
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